## Мультимасштабное моделирование динамики и свойств наноструктур

Метод конечных элементов → молекулярная динамика → квантовая модель о.г. Глухова, имени К.Г. Чернышевского, e-mail: glukhovaoe@info.sgu.ru

#### 1. Моделирование деформации нанотрубки-стержня

(International Journal of Solids and Structures 50 (2013) 49–56)

UNDEFORMED (REFERENCE)

#### Симулирование сжатие нанотрубки (10,10)



Растяжение/сжатие трубки относительно средней линии

#### Конечно-элементное изучение нанотрубки (10,10)



#### 2. Исследование композитных углеродных наноструктур *CARBON50(2012)603-611*



$$\frac{EA}{L} = k_r, \ \frac{EI}{L} = k_\theta, \ \frac{GJ}{L} = k_\tau$$

- cross- sectional area (A),
- Young's modulus (E), shear modulus (G), length (L)

I, J – моменты инерции

$$\begin{split} d &= 4 \sqrt{\frac{k_{\theta}}{k_{r}}}, \ E = \frac{k_{\tau}^{2}L}{4\pi k_{\theta}}, \ G = \frac{k_{r}^{2}k_{\tau}L}{8\pi k_{\theta}^{2}}, \ A = \frac{\pi d^{2}}{4}, \ I_{y} = I_{z} = \frac{\pi d^{4}}{64}, \ J \\ &= \frac{\pi d^{4}}{32}. \end{split}$$

| Table 1 – Schematic view of four types of pillared graphene structures. |              |              |              |              |  |  |
|-------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--|--|
|                                                                         | PGS_I        | PGS_II       | PGS_III      | PGS_IV       |  |  |
| Top view                                                                |              | •••          |              |              |  |  |
| Side view                                                               |              |              | •            |              |  |  |
| Iso view                                                                |              |              | 墩            |              |  |  |
| # of atoms<br># of C—C bonds                                            | 1124<br>1560 | 2732<br>3912 | 1892<br>2712 | 3500<br>5064 |  |  |

#### Table 2 – Dimensions of four types of pillared graphene structures.

|         | Pillar length <sup>[nm]</sup> | Inter-pillar<br>distance [nm] |                | Unitcell size [nm] |      |  |
|---------|-------------------------------|-------------------------------|----------------|--------------------|------|--|
|         |                               |                               | L <sub>x</sub> | Ly                 | Lz   |  |
| PGS_I   | 1.21                          | 2.36                          | 3.32           | 3.35               | 2.37 |  |
| PGS_II  | 1.21                          | 3.94                          | 5.84           | 5.30               | 2.53 |  |
| PGS_III | 3.25                          | 2.36                          | 3.32           | 3.35               | 6.26 |  |
| PGS_IV  | 3.25                          | 3.94                          | 5.84           | 5.30               | 6.42 |  |



Периодические граничные условия для нормальных напряжений  $ar{ar{\epsilon}}_1 = ar{m{u}}_{{f x},{f x}},$ 

$$\begin{cases} u_x|_{x=x_{\min}} + \overline{\epsilon}_1 L_x = u_x|_{x=x_{\max}}, \\ u_y|_{x=x_{\min}} = u_y|_{x=x_{\max}}, \quad u_z|_{x=x_{\min}} = u_z|_{x=x_{\max}}, \quad \theta_i|_{x=x_{\min}} = \theta_i|_{x=x_{\max}}, \\ u_i|_{y=y_{\min}} = u_i|_{y=y_{\max}}, \quad \theta_i|_{y=y_{\min}} = \theta_i|_{y=y_{\max}}, \\ u_i|_{z=z_{\min}} = u_i|_{z=z_{\max}}, \quad \theta_i|_{z=z_{\min}} = \theta_i|_{z=z_{\max}}, \quad (i = x, y, z). \end{cases}$$

Периодические граничные условия для нормальных напряжений

 $\begin{cases} u_{y}|_{x=x_{\min}} + \bar{\gamma}_{12} L_{x} = u_{y}|_{x=x_{\max}}, & \bar{\varepsilon}_{2} = \bar{u}_{y,y} \text{ and } \bar{\varepsilon}_{3} = \bar{u}_{z,z} \\ u_{x}|_{x=x_{\min}} = u_{x}|_{x=x_{\max}}, & u_{z}|_{x=x_{\min}} = u_{z}|_{x=x_{\max}}, & \theta_{i}|_{x=x_{\min}} = \theta_{i}|_{x=x_{\max}}, \\ u_{i}|_{y=y_{\min}} = u_{i}|_{y=y_{\max}}, & \theta_{i}|_{y=y_{\min}} = \theta_{i}|_{y=y_{\max}}, \\ u_{i}|_{z=z_{\min}} = u_{i}|_{z=z_{\max}}, & \theta_{i}|_{z=z_{\min}} = \theta_{i}|_{z=z_{\max}}, & (i = x, y, z). \end{cases}$ 

#### Вычисленные модули Юнга для четырех типов композита









### 3. Прогиб графена



#### Монослой графена:

длина 36.9Å, ширина 41.18 Å

Прогиб графенового листа, жестко закрепленного по краям, осуществлялся методом наноиндентирования. Игла атомно-силового микроскопа моделировалась платиновой пирамидой, имеющей гранецентрированную кубическую решетку. Расстояние между соседними атомами пирамиды было взято 1.42 Å, площадь верхнего слоя пирамиды составила 243.98 Å<sup>2</sup>, площадь нижнего слоя — 18.14 Å<sup>2</sup>, площадь поверхности пирамиды — 346.78 Å<sup>2</sup>.



Скорость прогиба графенового фрагмента  $v = \frac{\delta}{m} = 100 m / \sec \theta$  $200\Lambda t$ Δt=1фс - временная итерация δ = 0.2Å - величина сдвига пирамиды Сила *F*, необходимая для прогиба ζ  $F = \frac{W}{M}$ , где W-полная энергия

Аппроксимирующая функция

 $F = 0.18\zeta^3 + 1.57\zeta$ 





Через 13200 итераций, соответствующих времени t=13.2 пс, в графеновом листе наблюдались разрушения связей.

Предельная приложенная сила, которую может выдержать исследуемый нами графеновый фрагмент *F*<sub>пред</sub> = 437.84 нН.

Критическое напряжение для графенового листа

$$F_{critical} = \frac{F_{\lim}}{S_{surafce}} = 126GPa$$

 $\sigma$ 

### Расчет локальных напряжений на

#### атомах структуры



14200 итераций, t=14.2 пс $\Sigma 41.82 \pm 0.82$  ГПа

для графенового листа

Критическое напряжение

## Прогиб бислойного графена



Аппроксимирующая функция

# Расчет локальных напряжений на атомах структуры

GPa



Критическим для данной структуры является локальное напряжение  $\sum 39 \pm 0.82$  ГПа.

Карта локальных напряжений для верхнего графеного листа за один временной шаг (200фс) до разрыва связей

#### Моделирование процесса прогиба графена

#### Однослойный графен

STEP=1 SUB =1 TIME=1 UZ (AVG) RSYS=0 DMX =.457591 SMN =-.457465 SMX =.010085

Image: Stepsiling state
Stepsiling st

**ANSYS** JAN 21 2013 09:56:49



-.457465 -.353565 -.249665 -.145765 -.041865 -.405515 -.301615 -.197715 -.093815 .010085

#### 1

STEP=1 SUB =1 TIME=1 UZ (AVG) RSYS=0 DMX =.457591 SMN =-.457465 SMX =.010085









## Бислойный графен



ANSYS<sup>1</sup> NODAL SOLUTION JAN 21 2013 10:23:47 STEP=1 SUB =1 TIME=1 UZ (AVG) RSYS=0 DMX =.593657 SMN =-.592043 SMX =.015855



ANSYS

JAN 21 2013

10:25:49

-.592043 -.456955 -.389411 -.254322 -.119233 .015855

-.592043 -.456955 -.321866 -.186778 -.051689 -.524499 -.389411 -.254322 -.119233 .015855





1

NODAL SOLUTION

STEP=1 SUB =1 TIME=1 UZ (AVG) RSYS=0 DMX =.593657 SMN =-.592043 SMX =.015855





**ANSYS** JAN 21 2013 10:26:33

## МКЭ/МД

В рамках двухшкальной декомпазиционной схемы величина полного смещения шкалы для α-атома в наномасштабной системе может быть разложена на две составляющие, т.е.

$$u_{\alpha} = \overline{u}_{\alpha} + \widetilde{u}_{\alpha}$$

*ū*<sub>α</sub> - компонента крупнозернистой шкалы, которая определена с помощью конечноэлементного разбиения или функции добавочной формы на множестве узловых точек, т.е.

$$\overline{u}_{\alpha} = \sum_{I} N_{I}(X_{\alpha}) d_{I}$$

где  $N_I(X_{\alpha})$  - функция формы, определенная в вычислительном узле *I* и вычисленная для атома  $\alpha$  с координатой Лагранжа  $X_{\alpha}$ ,  $d_I$  – вектор смещения в узле *I*.



Мультимасштабное разбиение для деформированной одностенной углеродной нанотрубки



(Слева) Начальное распределение частиц и сложенная молекулярная структура углеродной нанотрубки в случае скручивания. (Справа) Конечная деформация частицы и молекулярная структура нанотрубки при скручивании на угол 50°



(Слева) Начальное распределение частиц и сложенная молекулярная структура углеродной нанотрубки в случае скручивания. (Справа) Конечная деформация частицы и молекулярная структура нанотрубки на конечной стадии изгиба.





#### Изгиб нанотрубки: деформация моделируется МКЭ







Динамический процесс распространения трещины в рамках мультимасштабной модели: **a** t = 0, **b**  $t = 5.0 \times 105$ , **c**  $t = 1.0 \times 106$ , **d**  $t = 1.25 \times 106$ , **e**  $t = 1.5 \times 106$ , **f**  $t = 1.625 \times 106$ , **g**  $t = 1.75 \times 106$ ,

- **h** *t* = 1.875 × 106, **i** *t* = 1.95 × 106,
- **j** *t* = 2.0 × 106, **k** *t* = 2.05 × 106,

l *t* = 2.125 × 106



Мультимасштабное моделирование распространения трещин



## Процесс липопротеидной инфильтрации в интиму артерий: МКЭ/крупно-зернистая МД

![](_page_31_Figure_1.jpeg)

## Липопротеиды

![](_page_32_Figure_1.jpeg)

#### Липопротеид низкой плотности

## Крупнозернистая модель протеинов

![](_page_33_Figure_1.jpeg)

Белковые, как правило амфифильные, составляющие липопротеинов, специфически связывающиеся с соответствующими липидами при формировании липопротеиновой частицы

![](_page_33_Picture_3.jpeg)

Спиралевидная структура протеина. Модель фосфолипидной структуры

![](_page_33_Picture_5.jpeg)

#### Самосборка липопротеида высокой плотности

![](_page_34_Figure_1.jpeg)

Применение атомной силовой микроскопии для исследования топологии поверхности эндотелия и построения конечно-элементной модели поверхности эндотелия

![](_page_35_Figure_1.jpeg)

0 nm

## Применение атомной силовой микроскопии для исследования топологии поверхности эндотелия

![](_page_36_Figure_1.jpeg)

## Применение атомной силовой микроскопии для исследования топологии

#### поверхности эндотелия

![](_page_37_Figure_2.jpeg)

Исследование щелевой области стыка между клетками показало, что максимальная ширина (измеряемая по наиболее высоким точкам границ клеток) составляет ~ 0,5 мкм, а наибольшая глубина — ~0,4 мкм. Характер изменения уровня высоты каждого профиля индивидуален, поскольку определяется формой граничных областей клеток.

## Конечно-элементное моделирование взаимодействия липопротеинов и клеток Эндотелия

![](_page_38_Picture_1.jpeg)

### Конечно-элементное моделирование взаимодействия липопротеинов и клеток эндотелия

![](_page_39_Picture_1.jpeg)

![](_page_39_Figure_2.jpeg)

![](_page_40_Figure_0.jpeg)

# Взаимодействие единичного липопротеина с клетками эндотелия

![](_page_41_Picture_1.jpeg)

## Симулирование процесса соударения

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_0.jpeg)

## Взаимодействие группы липопротеинов с клетками эндотелия

![](_page_44_Figure_1.jpeg)

## Симулирование удара

![](_page_45_Figure_1.jpeg)

#### Взаимодействие ЛВП с поверхностью эндотелия: МКЭ+МД

![](_page_46_Figure_1.jpeg)

![](_page_46_Picture_2.jpeg)

Параметры для синей части (головы фосфолипидов): коэфф. Пуассона 0.5 Модуль Юнга 105 730.183 H/m<sup>2</sup>,

Для хвостов (серый слой - хвосты фосфолипидов) коэфф. Пуассона 0.5 Модуль Юнга 73 651.844 H/m<sup>2</sup>

Для боковых слоев (красно-зеленые - протеины) коэфф. Пуассона 0.5 Модуль Юнга 98 281.752 H/m<sup>2</sup>